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� Logic is a formal language together with a relationship, often denoted
by “|=”, between a set of formulae and a formula:

Γ |= ϕ

� Formulae related by this relationship to the empty set are of special
interest. If

∅ |= ϕ or |= ϕ

we say ϕ is valid.
� For classical logic, the deduction theorem ensures that if

{γ1, . . . , γn} |= ϕ

then

|= (γ1 → . . . (γn−1 → (γn → ϕ)))
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� A logic language together with a syntactically defined relation, often
denoted by “⊢”, is called a calculus.

Γ ⊢ ϕ

� Again, formulae related by this relationship to the empty set are of
special interest. If

∅ ⊢ ϕ or ⊢ ϕ

we say ϕ is a theorem.
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� Formally, a calculus is defined as a pair 〈A,R〉, where A is a set of
formulae and R is a set of inference rules.

� An inference rule is usually given as:

γ1
...
γn
ϕ

where γi are the premises and ϕ is the conclusion. The application of
the inference rule to the premises produces the conclusion. We also say
that the conclusion is derived from the premises (by the inference rule).
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� Strong soundness:

if Γ ⊢CL ϕ then Γ |=L ϕ

� Weak soundness:

if ⊢CL ϕ then |=L ϕ

� Strong completeness:

if Γ |=L ϕ then Γ ⊢CL ϕ

� Weak completeness:

if |=L ϕ then ⊢CL ϕ

� Consistency: if there is no ϕ such that both ⊢C
L
ϕ and ⊢C

L
¬ϕ.
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� Because of the deduction theorem, weak properties are often enough to
show a calculus has good properties. This is why automated reasoning
is often referred to as theorem proving.

� Those good properties are not enough to ensure that a calculus is
suitable for implementation.
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The set of logical symbols is given by the union of the following sets:

1. P = {PnP , QnQ , RnR , . . . , P
nP1
1 , Q

nQ1
1 , R

nR1
1 , . . .};

2. F = {fnf , gng , hnh , . . . , f
nf1
1 , g

ng1
1 , h

nh1
1 , . . .};

3. C = {a, b, c, . . . , a1, b1, c1, . . .};
4. V = {x, y, z, . . . , x1, y1, z1, . . .};
5. {∀, ∃}
6. {¬,∨,∧,→,↔};
7. (, ), and ,.

The set of well-formed formulae in the first-order language, denoted by
WFFLFO

, is the least set obtained by recursively applying the following:

� Pn(t1, . . . , tn) ∈WFFLFO
, where Pn ∈ P, for ti ∈ T , 0 ≤ i ≤ n,

n ∈ N;
� if ϕ, ψ ∈WFFLFO

and x ∈ V , then ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ),
(ϕ↔ ψ), ∀xϕ and ∃xϕ ∈WFFLFO

.

Obs.: We’ll restrict ourselves to sentences, that is, well-formed formulae
with no free variables.
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An interpretation M for (P,F) consists of:

� a non-empty set A (universe);
� a function fM : An −→ A, for each fn ∈ F ;
� a relation PM ⊆ An, for each Pn ∈ P.

Let M = (A, {fM}f∈F , {P

M}P∈P) be an interpretation for (P,F), x ∈ V
and ϕ, ψ in WFFLFO

:

1. M |= P (t1, . . . , tn) iff (t1, . . . , tn) ∈ P
M;

2. M |= ¬ϕ iff M 6|= (ϕ);
3. M |= ϕ ∧ ψ iff M |= ϕ e M |= ψ;
4. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ; ;
5. M |= ϕ→ ψ iff M |= ¬ϕ ∨ ψ;
6. M |= ∀xϕ iff M |= ϕ[a\x] for all a ∈ A;
7. M |= ∃xϕ iff M |= ϕ[a\x] for some a ∈ A.
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� The development of automated reasoning tools started shorter after
computers were available: the first Turing-complete programmable
digital computer, the ENIAC, was operational in 1946; in 1954, a
program written by Martin Davis produces a proof for the Presburger
arithmetic (published in 1957).

� George Collins implemented parts of Tarski’s decision procedure for
elementary algebra on an IBM 704. Also published in 1957.

� Most procedures relied on (naive) enumerations of proofs and/or
models.

� First results were not encouraging: even short proofs for known
theorems could not be carried out by computers. In the words of Martin
Davis on his program: “Its great triumph was to prove that the sum of
two even numbers is even.”
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� In 1929, Presburger shows that the first order theory of addition on the
natural numbers is decidable [Pre29].

� Axioms for the Presburger arithmetic are:

1. ¬(0 = x+ 1)
2. x+ 1 = y + 1→ x = y

3. x+ 0 = x

4. x+ (y + 1) = (x+ y) + 1
5. P (0) ∧ ∀x(P (x)→ P (x+ 1))→ ∀yP (y)

� The procedure consists of quantifier elimination on formulae in
antiprenex disjunctive normal form, whose implementation on a
JOHNNIAC was reported in [Dav57].
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� The JOHNNIAC at Princeton:

– John von Neumann Numerical Integrator and Automatic Computer,
Rand Corp.

– Vacuum tube machine.
– 1024 40-bit word machine (yes, this is only 5KB!).
– MFTBF (Mean Flight Time Between Failures) of 10 minutes.
– Add time: 50ms (that’s about 0.02 MIPS).

� Fischer and Rabin showed that complexity is double-exponential [FR74].
Upper bound is triple-exponential [Opp78].
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� It was devised and implemented by Newell, Shaw, and Simon
[NS56, NS57, NSS57].

� It was implemented on a JOHNNIAC at the Rand Corporation, using a
programming language devised by the authors.

� The calculus was based on that of the Principia: five axioms together
with substitution and modus ponens. It also includes a rule for
replacement of definitions. The proof is based on the construction of a
tree, which handles space by using heuristics associated to detachment,
backward and forward chaining. If we want to prove ϕ:

– find a sentence ψ such that ψ → ϕ is provable;
reduce the proof of ϕ to the proof of ψ (detachment);

– if ϕ is of the form ψ → χ, find ψ → χ′ which is provable;
reduce the proof of ϕ to the proof of χ′ → χ (chaining);

– if ϕ is of the form ψ → χ, find χ′ → χ which is provable;
reduce the proof of ϕ to the proof of ψ → χ′ (chaining).
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))

2.01 ?(p→ ¬p)→ ¬p
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))

2.01 ?(p→ ¬p)→ ¬p

1.2 !(A ∨A)→ A [1.2, similarity]
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))

2.01 ?(p→ ¬p)→ ¬p

1.2 !(A ∨A)→ A [1.2, similarity]
1.2′ !(¬B ∨ ¬B)→ ¬B [1.2, substitution]
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))

2.01 ?(p→ ¬p)→ ¬p

1.2 !(A ∨A)→ A [1.2, similarity]
1.2′ !(¬B ∨ ¬B)→ ¬B [1.2, substitution]
1.2′′ !(B → ¬B)→ ¬B [1.2′, replacement]
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1.01 (p→ q) = (¬p ∨ q)
1.2 (p ∨ p)→ p

1.3 p→ (q ∨ p)
1.4 (p ∨ q)→ (q ∨ p)
1.5 ((p ∨ q) ∨ r)→ ((q ∨ p) ∨ r)
1.6 (p→ q)→ ((r ∨ p)→ (r ∨ q))

2.01 ?(p→ ¬p)→ ¬p

1.2 !(A ∨A)→ A [1.2, similarity]
1.2′ !(¬B ∨ ¬B)→ ¬B [1.2, substitution]
1.2′′ !(B → ¬B)→ ¬B [1.2′, replacement]
1.2′′′ !(p→ ¬p)→ ¬p [1.2′′, replacement]
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2.01 ?(p → q) → ((q → r) → (p → r))
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
2.04′L ?(q → r) → ((p → q) → (p → r))
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
2.04′L ?(q → r) → ((p → q) → (p → r))
2.05 !(A → B) → ((C → A) → (C → B)) [theorem]
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
2.04′L ?(q → r) → ((p → q) → (p → r))
2.05 !(A → B) → ((C → A) → (C → B)) [theorem]
2.05′ !(q → r) → ((p → q) → (p → r))

[2.05, substitution]
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
2.04′L ?(q → r) → ((p → q) → (p → r))
2.05 !(A → B) → ((C → A) → (C → B)) [theorem]
2.05′ !(q → r) → ((p → q) → (p → r))

[2.05, substitution]
2.01 !(p → q) → ((q → r) → (p → r))

[2.05′, 2.04′, detachment]
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2.01 ?(p → q) → ((q → r) → (p → r))

2.04 !(A → (B → C)) → (B → (A → C)) [theorem]
2.04′ !((q → r) → ((p → q) → (p → r))) → ((p → q) → ((q → r) → (p → r)))

[2.04, substitution]
2.04′L ?(q → r) → ((p → q) → (p → r))
2.05 !(A → B) → ((C → A) → (C → B)) [theorem]
2.05′ !(q → r) → ((p → q) → (p → r))

[2.05, substitution]
2.01 !(p → q) → ((q → r) → (p → r))

[2.05′, 2.04′, detachment]
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To prove A→ C, find B such that:

((A→ B) ∧ (B → C))→ (A→ C)
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To prove A→ C, find B such that:

((A→ B) ∧ (B → C))→ (A→ C)

1.2 (p ∨ p)→ p

2.08 ?p→ p
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To prove A→ C, find B such that:

((A→ B) ∧ (B → C))→ (A→ C)

1.2 (p ∨ p)→ p

2.08 ?p→ p

2.07 !A→ (A ∨A) [theorem]
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To prove A→ C, find B such that:

((A→ B) ∧ (B → C))→ (A→ C)

1.2 (p ∨ p)→ p

2.08 ?p→ p

2.07 !A→ (A ∨A) [theorem]
2.07′ !p→ (p ∨ p) [2.07, substitution]
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To prove A→ C, find B such that:

((A→ B) ∧ (B → C))→ (A→ C)

1.2 (p ∨ p)→ p

2.08 ?p→ p

2.07 !A→ (A ∨A) [theorem]
2.07′ !p→ (p ∨ p) [2.07, substitution]
2.07′′ !p→ p [2.07′, 1.2, chaining]
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� The British Museum algorithm enumerates all theorems in a forward
manner from axioms to the proof (if there is one).

� The Logic Theory Machine works in a backward manner in order to find
sub-problems from the desired axioms or known theorems.

(...) working backward may be analogous to the ease with
which a needle can find its way out of a haystack, compared
with the difficulty of someone finding the lone needle in the
haystack. [NSS57]

� The Logic Theory Machine could prove 38 of the first 52 theorems on
Chapter 2 of the Principia (the remainder 14 problems could not be
solved because of memory limitations).

� The program could use results previously proved: there was learning in
theorem proving already!

� Backward reasoning is still one of the most used techniques in
automated reasoning.
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� The JOHNNIAC at Rand: by 1956, tubes had already been replaced by
transistors, main memory had been expanded to 4096 words and a
drum, the external storage device, of 12K had been added; MFTBF was
around 100 hours.

� It took ten seconds to prove:

(2.01) (p→ ¬p)→ ¬p.

� It took 12 minutes, using all 38 theorems already proved, to prove

(2.45) ¬(p ∨ q)→ ¬p.

� Failure to produce a proof was reported after 23 minutes for:

(2.31) p ∨ (q ∨ r)→ (p ∨ q) ∨ r.

� The Logic Theory Machine is not a complete procedure (because of the
way it deals with substitution and how it uses heuristics to guide the
search for a proof).
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� It must be emphasised that the Logic Theory Machine was not designed
for efficiency: it tries to mimic the way humans produce proofs.

� A calculus designed for efficiency was that of Wang: it’s a two-sided
sequent system, whose inference rules remove one operator each time.

� In the case of a split, both sequents must be proved.
� This work started at IBM in the Summer of 1958 and then moved to

the Bell Labs in 1959-1960 [Wan60a, Wan60b, Wan61].
� Three programs were developed:

– One for propositional logic;
– One for the decidable part of predicate logic;
– One for all predicate logic.
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p,¬q ∧ r ⇒ p ∧ r [Initial Sequent]
p,¬q, r ⇒ p ∧ q [Left conjunction removal]

p, r ⇒ q, p ∧ r [Left negation removal]

p, r → q, p

[Right conjunction removal]
p, r → q, r

[Right conjunction removal]
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� The first program, the one dedicated to propositional logic, took 37
minutes to prove the 220 theorems from the Principia.

� Techniques, based on pattern matching, were used during enumeration
of substitutions (somewhat anticipating the results from Prawitz).

It is also worth noting that other authors have responded heavily to the
heuristics proposed by Newell, Shaw, and Simon. See, for instance,

� B. Dunham and R. Fridshal and G. L. Sward: “A non-heuristic program
for proving elementary logical theorems” [DFS59].

� The procedure used rules as splitting and pure literal reduction, which is
later used by Davis and Putnam in their satisfiability procedure.

published under the chapter “Pattern recognition and machine learning” in
the First International Conference on Information Processing, in Paris.
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� IBM Research at the Lamb Estate in Croton-on-Hudson, NY.
� Implemented Beth’s semantic tableaux for first-order logic (although it

was actually closer to Hintikka’s method) in 1958 [Gel59, Gil60, Gil70].
� They lately got to know – and acknowledge the fact – that theirs were

not the first implementation of a procedure for first-order logic (IBM
704).

– Take as input a negated first-order formula in prenex form with
matrix in disjunctive normal form.

– Search for constants is about the same that the one proposed by
Prawitz.
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� Prawitz developed a general calculus
for predicate logic based on
contradiction.

– A derivation is a sequence of pairs:
(φ, F ), . . .

– Each pair in the sequence is derived
from the previous by application of
“usual” inference rules for formulae
without quantifiers.

– A derivation from a quantified
formula relies on some
enumeration of the constants.

– If the derivation contains two pairs
(ψ, T ) and (ψ, F ), then a
contradiction is found. Thus, the
original formula is valid.
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� (∀xP (x)→ ∃yP (y), F )
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� (∀xP (x)→ ∃yP (y), F )
� (∀xP (x)→ ∃yP (y), F ), (∀xP (x), T ), (∃yP (y), F )
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� (∀xP (x)→ ∃yP (y), F )
� (∀xP (x)→ ∃yP (y), F ), (∀xP (x), T ), (∃yP (y), F )
� By the semantics of the universal operator, then for any constant c, we

have that (P (c), T ). We consider an enumeration of all constants,
c1, c2, . . ., and take any constant:
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� (∀xP (x)→ ∃yP (y), F )
� (∀xP (x)→ ∃yP (y), F ), (∀xP (x), T ), (∃yP (y), F )
� By the semantics of the universal operator, then for any constant c, we

have that (P (c), T ). We consider an enumeration of all constants,
c1, c2, . . ., and take any constant:

� (P (c1), T )
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� (∀xP (x)→ ∃yP (y), F )
� (∀xP (x)→ ∃yP (y), F ), (∀xP (x), T ), (∃yP (y), F )
� By the semantics of the universal operator, then for any constant c, we

have that (P (c), T ). We consider an enumeration of all constants,
c1, c2, . . ., and take any constant:

� (P (c1), T )
� By the semantics of the existential operator, (∃yP (y), F ) implies that

for any constant c, we have that P (c) is false. We select a constant
that has been used before:
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� (∀xP (x)→ ∃yP (y), F )
� (∀xP (x)→ ∃yP (y), F ), (∀xP (x), T ), (∃yP (y), F )
� By the semantics of the universal operator, then for any constant c, we

have that (P (c), T ). We consider an enumeration of all constants,
c1, c2, . . ., and take any constant:

� (P (c1), T )
� By the semantics of the existential operator, (∃yP (y), F ) implies that

for any constant c, we have that P (c) is false. We select a constant
that has been used before:

� (P (c1), F )
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� This is a tableau!
� Constant selection is slightly more complicated than what was outlined

in the example.
� Prawitz coded the procedure in a programming language he devised.
� His father, Håkan Prawtiz, hand-translated the code into machine code

in 1957: FACIT EDB (transistorised computer), 2049 40-bits machine
words, 8192 words drum.

� In 1958, Neri Voghera tested the procedure in a number of examples.

– Outlined at the first IFIP, in Paris, 1960.
– Published in 1960 [PPV60].

� The search for constants in Prawitz procedure were far from optimal.
� Prawitz introduced the use of unification in 1960: the method relied on

the use of meta-variables which were replaced when needed, instead of
using a fixed sequence.
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None of the mentioned procedures allowed functional symbols.
Davis-Putnam, 1960, introduces Skolem functions and the Herbrand
universe into the world of automated deduction. It also introduces clausal
form. Finally, they proposed the unit resolution rule (which is there called
“rule for the elimination of one-literal clauses”) [DP60, DLL62].
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ϕ
def
= Q1x1 . . . Qnxnψ

where
−→ ϕ is a sentence: no free variables.
−→ Each Qi, 1 ≤ i ≤ n, is a quantifier.
−→ ψ is in Negation Normal Form (NNF).
−→ ψ is the matrix of ϕ.
−→ xi, 1 ≤ i ≤ n, is free in ψ.
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Let

ϕ
def
= Q1x1 . . . Qnxnψ

be a formula in Prenex Normal Form where Qi is the leftmost existential
quantifier. If ϕ is satisfiable, then

ϕ′ def
= Q1x1 . . . Qi−1xi−1Qi+1xi+1 . . . Qnxnψ[xi 7→ f i−1(x1, . . . , xi−1)]

where f i−1 is a new functional symbol, is satisfiable.

Obs.: The transformation is satisfiability preserving : if there is a model M

for ϕ, then there is a model M’ for ϕ′.
Note that this is enough for proof methods based on contradiction: if there
is no model M’ for ϕ′, then there is no model M for ϕ.
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
¬(∀x(P (x)→ Q(x))→ (∀yP (y)→ ∀zQ(z)))
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
¬(∀x(P (x)→ Q(x))→ (∀yP (y)→ ∀zQ(z)))
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ¬∀zQ(z)
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
¬(∀x(P (x)→ Q(x))→ (∀yP (y)→ ∀zQ(z)))
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ¬∀zQ(z)
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ∃z¬Q(z)
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
¬(∀x(P (x)→ Q(x))→ (∀yP (y)→ ∀zQ(z)))
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ¬∀zQ(z)
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ∃z¬Q(z)
∀x∀y∃z((¬P (x) ∨Q(x)) ∧ P (y) ∧ ¬Q(z))
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¬(∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x)))
¬(∀x(P (x)→ Q(x))→ (∀yP (y)→ ∀zQ(z)))
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ¬∀zQ(z)
∀x(¬P (x) ∨Q(x)) ∧ ∀yP (y) ∧ ∃z¬Q(z)
∀x∀y∃z((¬P (x) ∨Q(x)) ∧ P (y) ∧ ¬Q(z))
∀x∀y((¬P (x) ∨Q(x)) ∧ P (y) ∧ ¬Q(f2(x, y)))
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Let S be a set of clauses. The Herbrand Universe H associated with S is a
set of ground terms constructed as follows:

� if there is f0 which occurs in S, then f0 ∈ H; otherwise, let H = {a};
� if t1, . . . , tn are terms in H and fn occurs in S, then

fn(t1, . . . , tn) ∈ H.

That is, the Herbrand Universe (for a set) is the set of all ground terms
(based on that set).
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� No functions: S = {P (x) ∨Q(x), P (x),¬Q(x)}

H = {a}

� One function: S = {P (x) ∨Q(x), P (x),¬Q(f(x))}

H = {a, f(a), f(f(a)), f(f(f(a))), . . .}

� One function (our working example):
S = {P (x) ∨Q(x), P (y),¬Q(f(x, y))}

H = {a, f(a, a), f(a, f(a, a)), f(f(a, a), a), f(f(a, a), f(a, a)), . . .}

� Two functions: S = {P (x) ∨Q(x), P (f(x)),¬Q(g(x))}

H = {a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), . . .}
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Let S be a set of clauses and H its Herbrand universe. The Herbrand base B for S is the
set of all ground atoms Pn(t1, . . . , tn), where Pn occurs in S and ti is in H, for
i = 1, . . . , n.
Examples:

� No functions: S = {P (x) ∨Q(x), P (x),¬Q(x)},H = {a}

{P (a), Q(a)}

� One function:
S = {P (x) ∨Q(x), P (x),¬Q(f(x))},H = {a, f(a), f(f(a)), f(f(f(a))), . . .}

{P (a), Q(a), P (f(a)), Q(f(a)), P (f(f(a))), Q(f(f(a))), . . .}

� For our working example: S = {¬P (x) ∨Q(x), P (y),¬Q(f2(x, y))},
H = {a, f2(a, a), f2(a, f2(a, a)), f2(f2(a, a), a), f2(f2(a, a), f2(a, a)), . . .}

{P (a), Q(a), P (f2(a, a)), Q(f2(a, a)), P (f2(a, f(a, a))), P (f2(f(a, a), a)), P (f2(f(a, a), f2(a, a))),



Herbrand Interpretations

Logic

The Early Days

⊲ DPLL

Davis-Putnam
Davis-Putnam-
Logemann-Loveland

Prenex Normal Form

Skolem Functions

Example

Herbrand Universe

Examples

Herbrand Base

⊲
Herbrand
Interpretations

Formally

Example

Ground Instances of
Clauses
Satisfiability of
Ground Clauses

Unsatisfiability

Saturation
Saturation and
Herbrand
Interpretations

Herbrand’s Theorems

DPLL

Example

Checking for
consistency

Examples

More examples

Only using rule III

First-Order Example

DPLL

C. Nalon CADE-27, Natal, 2019 – 36 / 82

Let S be a set of clauses and H be its Herbrand universe.

� A Herbrand interpretation provides:

– A domain: H
– An assignment for constants to an element of the domain;
– An assignment for functional symbols to an element of the domain;
– An assignment for predicate symbols to {⊥,⊤}
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Let S be a set of clauses, H be its Herbrand universe and B be a Herbrand
base for S. Let I = 〈H,B〉. We say that I is a Herbrand interpretation if
tB = t for all terms t.
That is,

� If c is a constant, then cI = c;
� If f is a n-ary functional symbol, then fI(h1, . . . , hn) = f(h1, . . . , hn).
� There are no restrictions for predicate symbols.

If B = {P1, . . . , Pn, . . .}, then take I = {m1, . . . ,mn, . . .}, where
mi = Pi or mi = ¬Pi.
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S = {P (x) ∨Q(x), P (y),¬Q(f2(x, y))}

H = {a, f2(a, a), f2(a, f2(a, a)), f2(f2(a, a), a), f2(f2(a, a), f2(a, a)), . . .}

{P (a), Q(a), P (f2(a, a)), Q(f2(a, a)), P (f2(a, f(a))), P (f2(f(a), a)), P (f2(f(a), f2(a, a))), . . .

Possible interpretations:

I1 = {P (a), Q(a), P (f2(a, a)), Q(f2(a, a)), P (f2(a, f2(a, a))), P (f2(f2(a, a), a)), . . .}

I2 = {¬P (a), Q(a), P (f2(a, a)), Q(f2(a, a)), P (f2(a, f2(a, a))), P (f2(f2(a, a), a)), . . .}

I3 = {P (a),¬Q(a), P (f2(a, a)), Q(f2(a, a)), P (f2(a, f2(a, a))), P (f2(f2(a, a), a)), . . .}

. . .
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Let S be a set of clauses and H its Herbrand universe. A ground instance
of a clause C, C ∈ S, for a Herbrand Base H (of S) is the clause
C ′ = C[tji\xi], for all xi occurring in C and tji ∈ H.
Examples:

� No functions: S = {P (x) ∨Q(x), P (x),¬Q(x)},H = {a},
B = {P (a), Q(a)}

– P (a) ∨Q(a), P (a),¬Q(a) are the only ground instances for B

� For our working example: S = {¬P (x) ∨Q(x), P (y),¬Q(f2(x, y))},
H =
{a, f2(a, a), f2(a, f2(a, a)), f2(f2(a, a), a), f2(f2(a, a), f2(a, a)), . . .},
B = {{P (a), Q(a), P (f2(a, a)), Q(f2(a, a)), . . .}

– P (a) ∨Q(a)
– P (f2(a, a)) ∨Q(f2(a, a))
– P (f2(a, f2(a, a))) ∨Q(f2(a, f2(a, a)))
– . . .
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Let S be a set of clauses and a I be a Herbrand interpretation for S.

� Let C ′ be a ground instance of a clause C in S. We say that I satisfies
C ′, denoted by I |= C ′, if C ′ ∩ I 6= ∅ (note that clauses are regarded as
set of literals).

� We say that I satisfies C in S if, and only if, for all ground clauses C ′

of C, we have that I |= C ′.

Example: S = {¬P (x) ∨Q(f(x))}

I = {P (a),¬Q(a), P (f(a)), Q(f(a)),¬Q(f(f(a))), . . .}

I |= ¬P (a) ∨Q(f(a))
I 6|= ¬P (f(a)) ∨Q(f(f(a)))
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Let S be a set of clauses. S is unsatisfiable if and only if for every Herbrand
interpretation I for S there is a ground clause C ′ of C in S such that
I 6|= C ′.

Example: {¬P (x), P (a)}

There are only two possible Herbrand interpretations:

� I1 = {P (a)}: does not satisfy the first clause;
� I2 = {¬P (a)}: does not satisfy the second clause.
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Let S be a set of clauses. Let T be a set of terms. By T (S), we denote the
saturation of S over T , which is the set of all ground clauses obtainable
from S by (uniformly) replacing variables by members of T .
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Let S be a set of clauses. Let T be a set of terms. By T (S), we denote the
saturation of S over T , which is the set of all ground clauses obtainable
from S by (uniformly) replacing variables by members of T .

Example: S = {¬P (x) ∨Q(x), P (y),¬Q(f2(x, y))}

H = {a, f2(a, a), f2(a, f2(a, a)), f2(f2(a, a), a), f2(f2(a, a), f2(a, a)), . . .}

H(S) = { ¬P (a) ∨Q(a), P (a),¬Q(f2(a, a)),
¬P (a) ∨Q(a), P (f2(a, a)),¬Q(f2(a, f2(a, a))),
¬P (f2(a, a)) ∨Q(f2(a, a)), P (a),¬Q(f2(f2(a, a), a)),
¬P (f2(a, a)) ∨Q(f2(a, a)), P (f2(a, a)),¬Q(f2(f2(a, a), f2(a, a))),
. . .}
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Let S be a set of clauses. Let T be a set of terms. By T (S), we denote the
saturation of S over T , which is the set of all ground clauses obtainable
from S by (uniformly) replacing variables by members of T .

Example: S = {¬P (x) ∨Q(x), P (y),¬Q(f2(x, y))}

H = {a, f2(a, a), f2(a, f2(a, a)), f2(f2(a, a), a), f2(f2(a, a), f2(a, a)), . . .}

H(S) = { ¬P (a) ∨Q(a), P (a),¬Q(f2(a, a)),
¬P (a) ∨Q(a), P (f2(a, a)),¬Q(f2(a, f2(a, a))),
¬P (f2(a, a)) ∨Q(f2(a, a)), P (a),¬Q(f2(f2(a, a), a)),
¬P (f2(a, a)) ∨Q(f2(a, a)), P (f2(a, a)),¬Q(f2(f2(a, a), f2(a, a))),
. . .}
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� A set of ground literals which does not include a complementary pair is
called a model (or interpretation).

� If I is a model and S is a set of ground clauses, then I is a model of S
if, for all clauses C in S, C contains a member of I.

� In general, if S is any set of clauses and H is the Herbrand universe of
S, then I is a model of S just in case I is a model of H(S).
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If S is any finite set of clauses and H is its Herbrand Universe,
then S is unsatisfiable if and only if some finite subset of H(S)
is unsatisfiable.

Note that this theorem suggests the following refutation procedure:

1. Select P0,P1,P2, . . . as finite subsets of the Herbrand universe H of S,
such that Pi ⊆ Pi+1, for all i ≥ 0 and such that

⋃∞

i=0
Pi = H.

2. Check P0(S),P1(S),P2(S), . . . for satisfiability.
3. By Herbrand’s theorem, for some i, Pi(S) is unsatisfiable.

Level saturation procedures take H0,H1,H2, . . . to be the finite sets over
which the set of clauses is saturated, where each Hi+1 contains all the
terms in Hi or whose arguments are in Hi.
Finding proof sets, i.e. finite unsatisfiable subsets which are minimal (in the
sense that every proper subset is satisfiable) requires guidance (heuristics).
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In order to prove ϕ

� Take the Skolemised prenex normal form of ϕ, where the matrix is in
Conjunctive Normal Form, obtaining ϕ′

� Repeat
Generate the Herbrand sets by level and check for unsatisfiability
until a contradiction has been found.
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∀x1∃x2∀x3R(x1, x2, x3)

∀x1∀x3R(x1, f(x1), x3)

R(a, f(a), a)

R(a, f(a), f(a))

R(f(a), f(f(a)), a)

R(f(a), f(f(a)), f(a))

...
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1. Unit resolution (which is there called “Rule for the Elimination of
One-Literal Clauses”):

(a) if p, ¬p are in S, S = {⊥}.
(b) if p in S, then

S = S \ {C | p ∈ C} \ {D | ¬p ∈ D} ∪ {D | D ∪ {¬p} ∈ S}.
(c) ¬p in S, then

S = S \ {C | ¬p ∈ C} \ {D | p ∈ D} ∪ {D | D ∪ {p} ∈ S}.

2. Pure Literal Elimination (which is there called “Affirmative-Negative
Rule”): if l occurs only positively or negatively, then
S = S \ {D | l ∈ D}.

3. Rule for Eliminating Atomic Formulas: if we can obtain (by factoring)
S = {(ϕ∨ p), (ψ∨¬p), R}, where R is free of p, then S = {(ϕ∨ψ), R}
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p ∨ q ∨ ¬r, p ∨ ¬q,¬p, r

p ∨ q ∨ ¬r, p ∨ ¬q,¬p, r

p ∨ q, p ∨ ¬q,¬p

q,¬q

⊥

p ∨ q,¬q,¬p ∨ q ∨ ¬r

p ∨ q,¬q,¬p ∨ q ∨ ¬r

p ∨ q,¬q

p ∨ q,¬q

p

∅
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p ∨ ¬q,¬p ∨ q, q ∨ ¬r,¬q ∨ ¬r

p ∨ ¬q,¬p ∨ q, q ∨ ¬r,¬q ∨ ¬r

p ∨ ¬q,¬p ∨ q

q ∨ ¬q

∅
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p ∨ r, p ∨ ¬s,¬p ∨ s,¬p ∨ ¬r, s ∨ ¬r,¬s ∨ r

(r ∧ ¬s) ∨ p, (¬r ∧ s) ∨ ¬p, s ∨ ¬r,¬s ∨ r

(r ∧ ¬s) ∨ (¬r ∧ s), s ∨ ¬r,¬s ∨ r

s ∨ r,¬s ∨ ¬r, s ∨ ¬r,¬s ∨ r

(s ∧ ¬s) ∨ r, (s ∧ ¬s) ∨ ¬r

(s ∧ ¬s)

s,¬s = ⊥
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∃x∃y∀z((F (x, y)→ (F (y, z) ∧ F (z, z)))
∧((F (x, y) ∧G(x, y))→ (G(x, z) ∧G(z, z))))

F (x, y),
¬F (y, f(x, y)) ∨ ¬F (f(x, y), f(x, y)) ∨G(x, y),

¬F (y, f(x, y)) ∨ ¬F (f(x, y), f(x, y)) ∨ ¬G(x, f(x, y)) ∨ ¬G(f(x, y), f(x, y))

It took 25 lines of instantiation using the enumeration procedure described
before, where nesting of functional symbols goes up to 25. Then, unit
resolution can be repeatedly applied and a contradiction is found.
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� Rule for Eliminating Atomic Formulas: if we can obtain (by factoring)
S = {(ϕ ∨ p), (ψ ∨ ¬p), R}, where R is free of p, then
S = {(ϕ ∨ ψ), R} (1960).

� Splitting (Rule for Eliminating Atomic Formulas)∗: if we can obtain (by
factoring) S = {(ϕ ∨ p), (ψ ∨ ¬p), R}, where R is free of p, then
S = {(ϕ ∧R), (ψ ∧R)} (1962).

� One of the formulae is put on the tape and processed; if it is not
satisfiable, then the other formula is tested for satisfiability.

� The formula

∃x∃y∀z((F (x, y) → (F (y, z)∧F (z, z)))∧((F (x, y)∧G(x, y)) → (G(x, z)∧G(z, z))))

was proved under two minutes after 60 instantiation lines.
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John Alan Robinson
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� “Theories of Meaning Implicit in the
British Empiricists Locke, Berkeley
and Hume” (Cambridge, 1952).

� “Causality, Probability and Testimony”
(PhD, University of Oregon, University
of Princeton, 1956).

� DuPont, operations research.

� In 1960, while holding a postdoc at
the University of Pittsburgh, he
accepts a tenure from Rice University,
but decides to take a Summer research
position at the Applied Mathematics
Division of the Argonne National
Laboratory (Chicago).

� His appointment at Argonne was to
implement the Davis-Putnam
procedure on an IBM 704.

� This work is described in a report
(1961) which is in revised form in a
paper from the Journal of the ACM
[Rob63].
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In 1960, he implements the DP procedure in FORTRAN (together with
George Robinson).

I spent the summer [of 1961] happily... running this thing. Yes,
it worked just like they [Davis and Putnam] said. However, the
examples that one would like to try next blew it up, and we ran
into combinatorial explosion of the instantiation, ’try all the
instances, enumerate all the instances.’ So I learnt that summer
that was not exactly an elegant way to go.

In 1961, he implements Prawitz procedure in FORTRAN.

The work at Argonne really was dominating my life, because I
started looking at other ways to go in this first-order procedure
stuff, and stumbled across the work of Prawitz, who was the
one who reached some form of unification, calculating instances
rather than trying them all.
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William F. Miller, the boss at the
Applied Mathematics Division in
Argonne, sets up a team for the
theorem-proving research project:

� John Alan Robinson.
� George Robinson, who earlier

had helped with the
implementation of the DP
procedure.

� Larry Wos, a mathematician at
the Lab.

� During those two summer
projects, Robinson rediscovered
unification and the resolution
rule, which was submitted in
1963, sitting on the desk of
some reviewer for a year, and
finally published in 1965.



... and then came light!

Logic

The Early Days

DPLL

⊲ Resolution

John Alan Robinson

Argonne

1962-1963

⊲
... and then came
light!

The Resolution
Principle

Resolution, at last

Unification

Another Example

The upshot

Literal Unification

Occurs Check

Most General Unifier

Unification - Example

Propositional
Resolution

The algorithm

Tautology Elimination

First-Order
Resolution

Resolution Method
Soundness and
Completeness

Subsumption

Historical References

C. Nalon CADE-27, Natal, 2019 – 57 / 82

� On the unification procedure, Robinson says that he was “absolutely
inspired by Prawitz”. He uses a version similar to that of Herbrand’s
unification algorithm in his paper. Herbrand’s procedure is definitional
rather than the one devised by Prawitz, which is algorithmic.

� Prawitz and Robinson were not aware of this part of Herbrand’s paper
(although both cite the paper).

� The resolution rule had also appeared before:

– it was first discovered in 1937, by Blake [Bla37];
– then rediscovered by Quine (there called “consensus rule”), in 1955

[vOQ55];
– and it was proposed for theorem proving in 1962 at Harvard

University by Dunham and North [DN63].
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Traditionally, a single step in deduction has been required, for
pragmatic and psychological reasons, to be simple enough,
broadly speaking, to be apprehended as correct by a human
being in a single intellectual act. No doubt this custom
originated in the desire that each single step of a deduction
should be indubitable, even though the deductions as whole
may consist of a long chain of such steps.

Resolution was far more complex, as it “condones single inferences which
are often beyond the ability of human to grasp (other than discursively).”
Resolution is machine-oriented : it was shown to be complete and it was
designed for efficiency. Thus, although indubitable, resolution wasn’t meant
for human reading.
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[CUT] ϕ ⇒ ψ

ψ ⇒ χ

ϕ ⇒ χ
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[CUT] ϕ ⇒ ψ

ψ ⇒ χ

ϕ ⇒ χ

[RESOLUTION] (ϕ ∨ ψ)
(¬ψ ∨ χ)
(ϕ ∨ χ)
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[CUT] ϕ ⇒ ψ

ψ ⇒ χ

ϕ ⇒ χ

[RESOLUTION] (ϕ ∨ ψ)
(¬ψ ∨ χ)
(ϕ ∨ χ)σ
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[RESOLUTION] (ϕ ∨ ψ)
(¬ψ′ ∨ χ)
(ϕ ∨ χ)σ

where σ = unifier(ψ, ψ′)

Example:

1. ¬Rich(x) ∨Happy(x)
2. Rich(Bill)
3. Happy(Bill) [RES, 1, 2, Bill\x]
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1. F (x, y)
2. ¬F (z, f1(w, z)) ∨ ¬F (f1(w, z), f1(w, z)) ∨G(w, z)
3. ¬F (t, f1(u, t)) ∨ ¬F (f1(u, t), f1(u, t)) ∨ ¬G(u, f1(u, t)) ∨ ¬G(f1(u, t), f1(u, t))
4. ¬F (f1(w, z), f1(w, z)) ∨G(w, z)

[Res, 1, 2, z\x, f1(w, z)\y]
5. G(w, z)

[Res, 1, 5, z\x, f1(w, z)\y]
6. ¬F (f1(w, z), f1(w, z)) ∨ ¬G(w, f1(w, z)) ∨ ¬G(f1(x, y), f1(x, y))

[Res, 1, 3, z\x, f1(w, z)\y]
7. ¬G(t, f1(u, t)) ∨ ¬G(f1(u, t), f1(u, t))

[Res, 1, 6, t\x, f1(u, t)\y]
8. ¬G(t, f1(u, t)) ∨ ¬G(f1(u, t), f1(u, t))

[Res, 1, 7, t\x, f1(u, t)\y]
9. ¬G(f1(u, t), f1(u, t))

[Res, 8, 5, t\w, f1(u, t)\z]
10. �

[Res, 9, 5, f1(u, t)\w, f1(u, t)\z]
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� Argonne was then the world champion in theorem-proving!
� Refinements were mostly introduced by Robinson and Wos.
� From 1967 till 1970, Robinson publishes around 90 papers on

theorem-proving.
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� Let ϕ be a literal. We denote by ϕi the symbol at the i− th position of
ϕ. If i > |ϕ|, then ϕi is undefined.

� Let ϕ and ψ be literals with ϕ 6= ψ. Let i be the least number such
that both ϕi and ψi are defined and such that ϕi 6= ψi. The pair
(ϕi, ψi) is called the disagreement pair of ϕ and ψ.

Example:

ϕ = P (g1(c), f1(a, g1(x), g2(a, g1(b))))
ψ = P (g1(c), f1(a, g1(x), g2(f2(x, y), z)))

Disagreement pair: (a, f2(x, y))
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� A substitution [t\x] satisfies the occurs check iff x does not occur in t.
� A disagreement pair D = (x, t) satisfies the occurs check if the variable

x does not occur in t.

Examples:
ϕ = P (a, x, f(g(y)))
ψ = P (z, h(z, w), f(w))

D = (a, z) satisfies the occurs check.

ϕ = P (z, h(z, w), f(w))
ψ = P (f(z), h(z, w), f(w))

D = (z, f(z)) does not satisfy the occurs check.
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Input: a pair of expressions χ1 and χ2.
Output: m.u.g. σ, if χ1 and χ2 are unifiable; “no”, otherwise.

σ ← ∅; W ← {χ1, χ2}; D ← is the disagreement pair of W ;
while |W | > 1 and D satisfies the occurs check:

select a variable x and a term t in D (x does not occur in t)
σ ← σ ◦ {t\x}
W = {χ1, χ2} ← {χ1[t\x], χ2[t\x]}
D ← disagreement pair of W

end_while
if |W | = 1
then return σ
else return “no”
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
|W | > 1 and D satisfies the occurs check
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
|W | > 1 and D satisfies the occurs check
σ ← {a\u, v\x} ◦ {f(y)\w} = {a\u, v\x, f(y)\w}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
|W | > 1 and D satisfies the occurs check
σ ← {a\u, v\x} ◦ {f(y)\w} = {a\u, v\x, f(y)\w}
W ← {P (a, v, f(y))[f(y)\w], P (a, v, w)[f(y)\w]}
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
|W | > 1 and D satisfies the occurs check
σ ← {a\u, v\x} ◦ {f(y)\w} = {a\u, v\x, f(y)\w}
W ← {P (a, v, f(y))[f(y)\w], P (a, v, w)[f(y)\w]}
W = {P (a, v, f(y))}; D is undefined;
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χ1 = P (a, x, f(y)) e χ2 = P (u, v, w)
σ ← ∅; W ← {P (a, x, f(y)), P (u, v, w)}; D ← (a, u)
|W | > 1 and D satisfies the occurs check
σ ← ∅ ◦ {a\u} = {a\u}
W ← {P (a, x, f(y))[a\u], P (u, v, w)[a\u]}
W = {P (a, x, f(y)), P (a, v, w)}, D ← (x, v)
|W | > 1 and D satisfies the occurs check
σ ← {a\u} ◦ {v\x} = {a\u, v\x}
W ← {P (a, x, f(y))[v\x], P (a, v, w)[v\x]}
W = {P (a, v, f(y)), P (a, v, w)}, D ← (f(y), w)
|W | > 1 and D satisfies the occurs check
σ ← {a\u, v\x} ◦ {f(y)\w} = {a\u, v\x, f(y)\w}
W ← {P (a, v, f(y))[f(y)\w], P (a, v, w)[f(y)\w]}
W = {P (a, v, f(y))}; D is undefined;
|W | = 1, returns σ = {a\u, v\x, f(y)\w}
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The method proposed by Robinson in [Rob65b].

� There are no axioms.
� There is only one inference rule:

[RESOLUTION] (ϕ ∨ l)
(ψ ∨ ¬l)
(ϕ ∨ ψ)

� Premises are called parent clauses (or the resolvends).
� The conclusion is called the resolvent.
� The literals l and ¬l are known as complementary literals.
� The parent clauses are resolved on the the complementary literals,

generating the resolvent.
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Let ϕ be a propositional formula and Γ0 be the set of clauses resulting from
the transformation of ϕ into CNF.

do set Γ = Γ0

select l, c1 ∈ Γ, c2 ∈ Γ such that

{

l ∈ c1,¬l ∈ c2,
c1 and c2 have
not been resolved

}

compute the resolvent r
replace Γ0 by Γ0 ∪ {r}

until � ∈ Γ0 or Γ0 = Γ

Note that the algorithm is non-deterministic.
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1: Let Γi = Γ0

2: repeat
3: Select c1 e c2 ∈ Γi such that l ∈ c1,¬l ∈ c2, where l is a literal and

c1 and c2 have not been resolved
4: Compute the resolvent r
5: if not((r a tautology) or (r ∈ Γi)) then
6: Do Γi+1 = Γi ∪ {r}
7: end if
8: until � ∈ Γ0 or Γi+1 = Γi
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There are two inference rules:

D ∨ L1

D′ ∨ ¬L2

(D ∨ D′) σ

where σ is the most general unifier for L1 and L2.

And we also need factoring:

Let C
def
= L1 ∨ . . . ∨ Ln be a clause and σ the most general unifier for a

subset of C. Then, Cσ is the factor of C and is added to the set of clauses.



Resolution Method

Logic

The Early Days

DPLL

⊲ Resolution

John Alan Robinson

Argonne

1962-1963
... and then came
light!

The Resolution
Principle

Resolution, at last

Unification

Another Example

The upshot

Literal Unification

Occurs Check

Most General Unifier

Unification - Example

Propositional
Resolution

The algorithm

Tautology Elimination

First-Order
Resolution

⊲ Resolution Method
Soundness and
Completeness

Subsumption

Historical References

C. Nalon CADE-27, Natal, 2019 – 71 / 82

1. Let Γi be a set of clauses;
2. Choose clauses C1 and C2 with complementary literals in Γi;
3. Compute the resolvent R from C1 and C2, applying factoring;
4. If R is the empty clause, then stop and return “unsatisfiable”;
5. Otherwise, Ni+1 ← Ni ∪ {R};
6. If Ni+1 = Ni, then stop and return “satisfiable”;
7. Otherwise, go back to step 2.
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1. Resolution for first-order is strongly sound:

if Γ ⊢Res
Lfo

ϕ, then Γ |=Lfo
ϕ

2. Resolution for first-order is refutationally complete:

if Γ |=Lfo
⊥, then Γ ⊢Res

Lfo
⊥
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1. Resolution for first-order is strongly sound:

if Γ ⊢Res
Lfo

ϕ, then Γ |=Lfo
ϕ

2. Resolution for first-order is refutationally complete:

if Γ |=Lfo
⊥, then Γ ⊢Res

Lfo
⊥

Binary resolution is also consequence complete:

Lemma 1 ([Lee67]). Let C be a set of propositional clauses. If a clause D
is a consequence of C, then there is a clause D′ which is derived by binary
propositional resolution from C and D′ subsumes D.



Subsumption

Logic

The Early Days

DPLL

⊲ Resolution

John Alan Robinson

Argonne

1962-1963
... and then came
light!

The Resolution
Principle

Resolution, at last

Unification

Another Example

The upshot

Literal Unification

Occurs Check

Most General Unifier

Unification - Example

Propositional
Resolution

The algorithm

Tautology Elimination

First-Order
Resolution

Resolution Method
Soundness and
Completeness

⊲ Subsumption

Historical References

C. Nalon CADE-27, Natal, 2019 – 73 / 82

Lemma 2. Let Γ be a set of clauses such that clauses C,C ′ ∈ Γ and
C |= C ′. Γ is unsatisfiable if, and only if, Γ \ {C ′} is unsatisfiable.

Obs.: If C |= C ′, we say that C subsumes C ′.
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The following is a list of historical accounts, some of which are given by
people working in the early years of Automated Reasoning:

[Dav83], [Lov84], [BL84], [Bib07], and [Dav01] .
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